๐Ÿงฉ ์˜ค๋žœ๋งŒ์— ๋ฐ์ดํ„ฐ๋งˆ์ด๋‹ ํฌ์ŠคํŒ…์ด๋‹ค. ๋‚ ๋„ ๋ฅ๊ณ , ์ด๋ž˜์ €๋ž˜ ์นœ๊ตฌ๋“ค๋„ ๋งŒ๋‚˜๋Š๋ผ ๊ทธ๋™์•ˆ ์‚ด์ง ๋œธํ–ˆ๋Š”๋ฐ ์•ž์œผ๋กœ ๋” ์ค‘์š”ํ•œ ๋‚ด์šฉ๋“ค์ด ๋งŽ๊ธฐ ๋•Œ๋ฌธ์— ๋‹ค์‹œ ์—ด์‹ฌํžˆ ์—…๋กœ๋“œํ•  ์˜ˆ์ •์ด๋‹ค๐Ÿƒโ€โ™‚๏ธ๐Ÿƒโ€โ™‚๏ธ.

๐Ÿงฉ ์ด๋ฒˆ ํฌ์ŠคํŒ…์—์„œ๋Š” ๋ฐ์ดํ„ฐ ์ „์ฒ˜๋ฆฌ์˜ ๋งˆ์ง€๋ง‰ ๊ฐœ๋…์ธ Data Transformation ์— ๋Œ€ํ•ด ์•Œ์•„๋ณด๋„๋ก ํ•˜์ž.


1. Data Transformation Preview

๐Ÿงฉ Data Transformation์€ ๋ฐ์ดํ„ฐ์˜ ์ „์ฒด attribute๋ฅผ ์ƒˆ๋กœ์šด ๊ฐ’์œผ๋กœ ๋ณ€๊ฒฝํ•ด์ฃผ๋Š” ์ผ์ข…์˜ ํ•จ์ˆ˜ ๋ฅผ ์˜๋ฏธํ•œ๋‹ค. ์ฆ‰, ๊ธฐ์กด์˜ ๊ฐ’์„ ์ƒˆ๋กœ์šด ๊ฐ’์œผ๋กœ ๋ฐ”๊ฟ”์ค€๋‹ค๋Š” ๊ฒƒ์— ๊ทธ ์˜๋ฏธ๊ฐ€ ์žˆ๋‹ค.

๐Ÿงฉ Data Transformation์„ ์œ„ํ•œ method๋กœ๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™์€ ๋ฐฉ๋ฒ•๋“ค์ด ์žˆ๋‹ค.

  • 1. Smoothing
    • ๋ฐ์ดํ„ฐ์˜ noise ์ œ๊ฑฐ
    • outlier๋ฅผ ์›๋ž˜ ๋ฐ์ดํ„ฐ์˜ ๋ถ„ํฌ์— ๋งž๊ฒŒ ๋ฐ”๊ฟˆ.
  • 2. Attribute / Feature Construction
    • ๊ธฐ์กด์˜ attribute ๋ฅผ ๊ฐ€์ง€๊ณ  ์ƒˆ๋กœ์šด attribute๋ฅผ ์ƒ์„ฑ
  • 3. Aggregation
    • ๋ฐ์ดํ„ฐ๋ฅผ ๋‹ค์–‘ํ•œ ๋ฒ”์ฃผ๋กœ ๋‚˜๋ˆ ์„œ ์š”์•ฝํ•จ
    • ex) ํ•™๊ณผ / ์„ฑ๋ณ„ / ํ˜ˆ์•กํ˜•
  • 4. Normalization
    • ๋ฐ์ดํ„ฐ๋ฅผ ๋‚ด๊ฐ€ ์›ํ•˜๋Š” ํŠน์ •ํ•œ specified๋œ range๋กœ scalingํ•˜๋Š” ๊ฒƒ.
  • 5. Discretization
    • ๋ฐ์ดํ„ฐ๋ฅผ ์ปจ์…‰์— ๋”ฐ๋ผ์„œ ๋ฌถ์–ด์คŒ
    • Aggregation๊ณผ ์œ ์‚ฌํ•จ
    • ex) ์ง€์—ญ์„ ์šฐํŽธ๋ฒˆํ˜ธ์— ๋”ฐ๋ผ์„œ ๋‚˜๋ˆ”

๐Ÿ‘‰ ๋Œ€๋žต ๋‹ค์„ฏ๊ฐœ์˜ ๋ฐฉ๋ฒ•์œผ๋กœ ๋‚˜๋ˆ ์ง€๋ฐ, ์ด ์ค‘์—์„œ ์ฃผ๋กœ ์‚ฌ์šฉ๋˜๋Š” ๋ฐฉ๋ฒ•์€ Normalization ๊ณผ Discretization ์ด๋‹ค. ๋‹ค์Œ ์ ˆ๋ถ€ํ„ฐ ์ด ๋‘๊ฐ€์ง€ ๋ฐฉ๋ฒ•์— ๋Œ€ํ•ด์„œ ์•Œ์•„๋ณด๋„๋ก ํ•˜์ž๐Ÿ™ƒ๐Ÿ™ƒ.

2. Normalization

๐Ÿงฉ ๋ฐ์ดํ„ฐ, ์ฃผ๋กœ attribute๋“ค์„ ์›ํ•˜๋Š” ๋ฒ”์œ„ ๋‚ด์—์„œ ์ •๊ทœํ™”ํ•œ๋‹ค๊ณ  ์ดํ•ดํ•˜๋ฉด ๋  ๊ฒƒ ๊ฐ™๋‹ค.


๐Ÿšฉ 2.1 Min-Max Normalization

๐Ÿงฉ ๋ฐ์ดํ„ฐ๋ฅผ ์„ค๋ช…ํ•˜๊ณ ์ž ํ•˜๋Š” ์ƒˆ๋กœ์šด ์ตœ๋Œ€, ์ตœ์†Œ ๋ฒ”์œ„๋ฅผ ์„ค์ •ํ•˜์—ฌ ์ •๊ทœํ™” ์ง„ํ–‰

๐Ÿงฉ ์‹ค์ œ ๋ฐ์ดํ„ฐ์˜ range [$min_{A},\; max_{A}$] ์™€ ์ƒˆ๋กœ์šด range [$new_{-}min_{A},\; new_{-}max_{A}$] ์— ๋Œ€ํ•ด์„œ

Normalizationํ•˜๋ ค๋Š” ๊ฐ’ $v$์— ๋Œ€ํ•ด์„œ


$v' = \frac{v-min_{A}}{max_{A}-min_{A}}\,(new_{-}max_{A}-new_{-}min_{A})\,+\,new_{-}min_{A}$


๐Ÿ‘‰ ์˜ˆ์ œ๋ฅผ ํ•œ๋ฒˆ ์‚ดํŽด๋ณด์ž.

  • ์›๋ณธ value $v= 73600$
  • ์‹ค์ œ ๋ฐ์ดํ„ฐ range = $[12000, 98000]$
  • ์ƒˆ๋กœ์šด range = $[0.0, 1.0]$

$vโ€™ = \frac{73600-12000}{98000-12000}\,(1.0-0.0)\,+\,(0.0) = 0.716$

๐Ÿงฉ ์ด๋ ‡๊ฒŒ Min-Max Normalization์„ ์‚ฌ์šฉํ•ด์„œ ์›๋ณธ ๋ฐ์ดํ„ฐ์—์„œ๋Š” ์ •ํ™•ํžˆ ์•Œ ์ˆ˜ ์—†์—ˆ๋˜ ๋ฐ์ดํ„ฐ์˜ ์œ„์น˜๋‚˜ ๋ถ„ํฌ๋ฅผ ๊ฐ„๋‹จํ•˜๊ฒŒ ์•Œ ์ˆ˜ ์žˆ๋‹ค. ๋ฐ์ดํ„ฐ๋ฅผ ์ƒ๋Œ€์ ์ธ ์น˜๋กœ ํ‘œํ˜„ํ•˜๊ณ ์ž ํ• ๋•Œ ํŠนํžˆ ์œ ์šฉํ•œ ๋ฐฉ๋ฒ•์ด๋‹ค. ๋”ฐ๋ผ์„œ ๋Œ€๋ถ€๋ถ„์˜ ๊ฒฝ์šฐ์— ๋ฐ์ดํ„ฐ๋ฅผ ํ‘œํ˜„ํ•˜๋ ค๋Š” ๋ฒ”์œ„๋ฅผ 0๊ณผ 1 ์‚ฌ์ด๋กœ ์žก๊ณ  normalizeํ•œ๋‹ค.


๐Ÿšฉ 2.2 Z-Score Normalization

๐Ÿงฉ ํ†ต๊ณ„ํ•™์„ ์ด๋ฏธ ์•Œ๊ณ  ์žˆ๋Š” ์‚ฌ๋žŒ์ด๋ผ๋ฉด ์•„๋งˆ ์ต์ˆ™ํ•  ๊ฒƒ์ด๋ผ ์ƒ๊ฐํ•œ๋‹ค. Z-Score ๋Š” ํ‰๊ท ์ด 0์ด๊ณ  ํ‘œ์ค€ํŽธ์ฐจ๊ฐ€ 1์ธ ์ •๊ทœํ™”๋œ ๋ถ„ํฌ๋กœ์จ ๊ฐ€์šฐ์‹œ์•ˆ ๋ถ„ํฌ๋ผ๊ณ ๋„ ํ•œ๋‹ค. ๋Œ€๋ถ€๋ถ„์˜ ํ‘œ๋ณธ์ •๊ทœ๋ถ„ํฌ๋ฅผ z-score์—์„œ ๊ตฌํ•˜๊ธฐ ๋•Œ๋ฌธ์—, ํ‘œ๋ณธ์˜ ํ‰๊ท ๊ณผ ํ‘œ์ค€ํŽธ์ฐจ๋งŒ์œผ๋กœ ๋ฐ์ดํ„ฐ๋ฅผ ์ •๊ทœํ™”ํ•  ์ˆ˜ ์žˆ์œผ๋ฉด์„œ๋„ ์ต์ˆ™ํ•œ ๋ฐฉ๋ฒ•์ด๋‹ค.

ํ‘œ๋ณธํ‰๊ท  $ฮผ$์™€ ํ‘œ์ค€ํŽธ์ฐจ $ฯƒ$์— ๋Œ€ํ•ด์„œ


$v'=\frac{v-ฮผ_{A}}{ฯƒ_{A}}=\frac{v-ํ‘œ๋ณธํ‰๊ท }{ํ‘œ์ค€ํŽธ์ฐจ}$


๐Ÿ‘‰ ์˜ˆ์ œ๋ฅผ ํ•œ๋ฒˆ ์‚ดํŽด๋ณด์ž.

  • $ฮผ=54000$
  • $ฯƒ=16000$
  • $v=73600$

$vโ€™=\frac{73600-54000}{16000}=1.225$


๐Ÿงฉ ์ด๋ ‡๊ฒŒ ์ •๊ทœํ™”ํ•œ ๊ฐ’์„ ์œ„์™€ ๊ฐ™์ด ํ‰๊ท ์ด 0์ด๊ณ  ํ‘œ์ค€ํŽธ์ฐจ๊ฐ€ 1์ธ ํ‘œ์ค€์ •๊ทœ๋ถ„ํฌํ‘œ์—์„œ ์ฐพ์Œ์œผ๋กœ์จ ์ด ๋ฐ์ดํ„ฐ์˜ ์œ„์น˜๊ฐ€ ์–ด๋Š์ •๋„์ธ์ง€, ๊ทธ ํ™•๋ฅ ์€ ์–ผ๋งˆ์ธ์ง€ ์•Œ ์ˆ˜ ์žˆ๋‹ค.


๐Ÿšฉ 2.3 Normalization by Decimal scaling

๐Ÿงฉ ์œ„์˜ ๋‘ ๋ฐฉ๋ฒ•์— ๋น„ํ•ด์„œ ์ฒ˜์Œ์— ๋“ค์—ˆ์„ ๋•Œ ๊ต‰์žฅํžˆ ์ƒ์†Œํ–ˆ๋˜ ์ •๊ทœํ™” ๋ฐฉ๋ฒ•์ด์—ˆ๋‹ค. ํ•˜์ง€๋งŒ ๊ทธ ๊ฐœ๋…์€ ์ƒ๊ฐ๋ณด๋‹ค ํ›จ์”ฌ ๊ฐ„๋‹จํ–ˆ๋‹ค. ๊ทธ๋ƒฅ ๋ฐ์ดํ„ฐ๋“ค์„ ๊ทธ ์ค‘์— $10^{maximum\;decimal}$๋กœ ๋‚˜๋ˆ  ์ •๊ทœํ™”ํ•˜๋Š” ๋ฐฉ๋ฒ•์ด๋‹ค. ์ด๋ ‡๊ฒŒ ๊ฐœ๋…์„ ์„ค๋ช…ํ•˜๊ธฐ๋ณด๋‹ค ์˜ˆ์ œ๋ฅผ ํ•œ๋ฒˆ ๋ณด๋ฉด ์ดํ•ด๊ฐ€ ๋ฐ”๋กœ ๋  ๊ฒƒ ๊ฐ™๋‹ค.

$Deciaml\;Scaling\;for\;\;\;data\;[2000,4000,6000,10000,64000]$


๐Ÿ‘‰ ์œ„์˜ ๋ฐ์ดํ„ฐ๋ฅผ ๋ณด๋ฉด ์•Œ๊ฒ ์ง€๋งŒ ๊ฐ ๋ฐ์ดํ„ฐ์˜ ์ž๋ฆฟ์ˆ˜๊ฐ€ $[4,4,4,5,5]$ ์ด๋‹ค. ๊ทธ๋Ÿฌ๋ฉด ์ด์ œ ์šฐ๋ฆฌ๋Š” ๊ฐ ๋ฐ์ดํ„ฐ๋ฅผ $10^{maximum\;decimal}$์ธ $10^{5}$์œผ๋กœ ๋‚˜๋ˆ ์ฃผ๊ธฐ๋งŒ ํ•˜๋ฉด ๋œ๋‹ค.

๋”ฐ๋ผ์„œ ์ •๊ทœํ™” ํ›„ ๋ฐ์ดํ„ฐ๋Š” ์•„๋ž˜์™€ ๊ฐ™๋‹ค.

$[0.02,0.04,0.06,0.1,0.64]$


3. Discretization

๐Ÿงฉ ์•ž์„œ ์‚ดํŽด๋ณธ Normalization์ด ๋ฐ์ดํ„ฐ๋ฅผ ์ •๊ทœํ™”ํ•ด์„œ ์ƒˆ๋กœ์šด ๋ฒ”์œ„๋กœ ํ‘œํ˜„ํ–ˆ๋‹ค๋ฉด Discretization์€ ๋ฐ์ดํ„ฐ๋ฅผ ๋ช‡๊ฐ€์ง€ ๋ฒ”์œ„๋กœ ๋ถ„๋ฅ˜ํ•˜๋Š” ๋ฐฉ๋ฒ•์ด๋‹ค. ์šฐ๋ฆฌ๊ฐ€ ์ด๋•Œ๊นŒ์ง€ ๊ณต๋ถ€ํ•œ ๋ฐ์ดํ„ฐ์˜ ์ž๋ฃŒํ˜•์€ ํฌ๊ฒŒ Nominal, Ordinal, Numeric์œผ๋กœ ๋‚˜๋ˆ ์ง€๋Š”๋ฐ, Discretization์€ ์ด ์ค‘์—์„œ Numeric ๋ฐ์ดํ„ฐ๋ฅผ ๋ถ„๋ฅ˜ํ•˜๊ธฐ ์œ„ํ•ด์„œ ์‚ฌ์šฉํ•œ๋‹ค.

๐Ÿงฉ ์ •๋ฆฌํ•˜์ž๋ฉด Discretization์€ Continuous attribute์˜ ๋ฒ”์œ„๋ฅผ ๊ตฌ๊ฐ„์œผ๋กœ ๋ถ„ํ• ํ•ด์„œ ๊ฐ ๋ฐ์ดํ„ฐ์— ๋ฒ”์œ„๋ฅผ ๊ธฐ์ค€์œผ๋กœ Label์„ ๋ถ€์—ฌํ•œ๋‹ค. ์ดํ›„ ๊ฐ Label์„ ์‚ฌ์šฉํ•ด์„œ ์‹ค์ œ ๋ฐ์ดํ„ฐ ๊ฐ’์„ ํ‘œํ˜„ํ•œ๋‹ค.

๐Ÿงฉ Discretization์„ ์œ„ํ•œ ๋ฐฉ๋ฒ•๋“ค์€ ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค.

๐Ÿ‘‰ Clustering๊ณผ Classification, Correlation์— ๋Œ€ํ•ด์„œ๋Š” ๋‚˜์ค‘์— ํ› ์–ด์–ด์–ผ์”ฌ ๋” ๋น„์ค‘์žˆ๊ฒŒ ๋‹ค๋ฃฐ ๊ฒƒ์ด๊ธฐ ๋•Œ๋ฌธ์— ๋„˜๊ธฐ๊ณ  ์ด๋ฒˆ ํฌ์ŠคํŒ…์—์„œ๋Š” Binning์— ๋Œ€ํ•ด์„œ๋งŒ ์•Œ์•„๋ณผ ์ƒ๊ฐ์ด๋‹ค.


๐Ÿšฉ 3.1. Binning

๐Ÿงฉ Binning์€ Discretization์˜ ๊ฐ€์žฅ ๋Œ€ํ‘œ์ ์ธ ๋ฐฉ๋ฒ•์œผ๋กœ, ๋ฐ์ดํ„ฐ๋ฅผ ๋ฒ”์œ„๋กœ ๋ถ„๋ฅ˜ํ•˜์—ฌ ๊ฐ๊ฐ์— Label์„ ๋ถ™์—ฌ ํ‘œํ˜„ํ•˜๋Š” ๋ฐฉ๋ฒ•์ด๋‹ค. ์•„๋ฌด๋ž˜๋„ ์ „๋ฐ˜์ ์ธ ๋ฐ์ดํ„ฐ์˜ ๊ตฌ๊ฐ„์„ ์‹ ๊ฒฝ์จ์•ผ ํ•  ๊ฒƒ์ด๊ธฐ ๋•Œ๋ฌธ์— ๊ทน๊ฐ’์˜ ์˜ํ–ฅ์„ ๋งŽ์ด ๋ฐ›๋Š”๋‹ค๋Š” ํŠน์ง•์ด ์žˆ๋‹ค.

๐Ÿงฉ Binning์˜ ๋ฐฉ๋ฒ•์€ ํฌ๊ฒŒ ๋‘ ๊ฐ€์ง€๋กœ ๋ถ„๋ฅ˜๋œ๋‹ค.

  • Equal-width (Equal-distance) partitioning : ๊ฐ Bin(๊ตฌ๊ฐ„)์˜ ๊ฐ„๊ฒฉ์ด ๊ฐ™๋„๋ก ์„ค์ •
  • Equal-depth (Equal-frequency) partitioning : ๊ฐ Bin ๋งˆ๋‹ค ๊ฐ™์€ ๊ฐœ์ˆ˜์˜ ๋ฐ์ดํ„ฐ๊ฐ€ ๋“ค์–ด๊ฐ€๋„๋ก ์„ค์ •

๐Ÿงฉ Binning์˜ ํŠน์ง•์„ ์ •๋ฆฌํ•˜๋ฉด ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค.

  • label์˜ ๊ฐœ์ˆ˜๋ฅผ ์ค„์ž„์œผ๋กœ์จ ๋ฐ์ดํ„ฐ์˜ ์‚ฌ์ด์ฆˆ๋ฅผ ์ค„์ผ ์ˆ˜ ์žˆ๋‹ค.
  • Equal-width ์˜ ๊ฒฝ์šฐ์—๋Š” ๊ทน๊ฐ’์˜ ์˜ํ–ฅ์„ ํŠนํžˆ ๋งŽ์ด ๋ฐ›๊ธฐ ๋•Œ๋ฌธ์— ์ด๋ฅผ ๋ณด์™„ํ•˜๊ธฐ ์œ„ํ•ด ๋‚˜์˜จ ๋ฐฉ๋ฒ•์ด Equal-depth ์ด๋‹ค.
  • ๋ฐ์ดํ„ฐ์˜ scaling์— ์ข‹๋‹ค.
  • ํ•˜์ง€๋งŒ Binning์„ ๊ฐ€์ง€๊ณ  ๋ฐ์ดํ„ฐ๋ฅผ ์ •ํ™•ํ•˜๊ฒŒ ๊ตฌ๋ถ„์ง€์„ ์ˆ˜๋Š” ์—†๋‹ค.

๐Ÿ‘‰ ์˜ˆ์ œ๋ฅผ ํ•œ๋ฒˆ ์‚ดํŽด๋ณด๋„๋ก ํ•˜์ž๐Ÿ™ƒ.

$data = [4,8,9,15,21,21,24,25,26,28,29,34]$

1. Equal-depth (Equal-frequency) partitioning

  • ๊ฐ Bin ๋งˆ๋‹ค ๊ฐ™์€ ๊ฐœ์ˆ˜์˜ ๋ฐ์ดํ„ฐ๊ฐ€ ๋“ค์–ด๊ฐ€๋„๋ก ์„ค์ •
    • Bin 1 : [4,8,9,15]
    • Bin 2 : [21,21,24,25]
    • Bin 3 : [26,28,29,34]

2. Smoothing by bin means

  • Equal-depth์˜ ๊ฒฐ๊ณผ ๊ฐ Bin์— ๋Œ€ํ•ด์„œ ํ‰๊ท ์„ ์ทจํ•จ
    • Bin 1 : [9,9,9,9]
    • Bin 2 : [23,23,23,23]
    • Bin 3 : [29,29,29,29]

3. Smoothing by bin boundaries

  • Equal-depth์˜ ๊ฒฐ๊ณผ ๊ฐ ๊ฐ’์„ ๊ฐ Bin์˜ ๋” ๊ฐ€๊นŒ์šด ์–‘๋ boundary๋กœ ๋ณด๋ƒ„
    • Bin 1 : [4,4,4,15]
    • Bin 2 : [21,21,25,25]
    • Bin 3 : [26,26,26,34]

๐Ÿงฉ ์ด๋ฒˆ ํฌ์ŠคํŒ…๊นŒ์ง€ ํ•ด์„œ ๋“œ๋””์–ด

  • Data Cleaning
  • Data Integration
  • Data Reduction
  • Dimensionality Reduction
  • Data Transformation

๊นŒ์ง€์— ์ด๋ฅด๋Š” Preprocessing์— ๋Œ€ํ•ด์„œ ๋ชจ๋‘ ์•Œ์•„๋ณด์•˜๋‹ค. ์–‘๋„ ๋งŽ๊ณ  ๊ฐœ๋…๋„ ๋งŽ์•„์„œ ์–ด๋–ค ์ƒํ™ฉ์— ์ •ํ™•ํžˆ ๋ญ˜ ์‚ฌ์šฉํ• ์ง€ ํ—ท๊ฐˆ๋ฆฌ๊ธฐ๋„ ํ•˜์ง€๋งŒ, ์ „๋ฐ˜์ ์ธ ๋ชฉ์ ์€ ๋ฐ์ดํ„ฐ๋ฅผ ์šฐ๋ฆฌ๊ฐ€ ์›ํ•˜๋Š” ํ˜•ํƒœ๋กœ ์ „์ฒ˜๋ฆฌํ•œ๋‹ค๋Š” ๊ฒƒ์„ ์ฃผ๋กœ ์•Œ๊ณ  ์žˆ์œผ๋ฉด ์ข‹์„ ๊ฒƒ ๊ฐ™๋‹ค. ๊ฐ๊ฐ์ด ๋…๋ฆฝ์ ์ด๋ผ๊ธฐ๋ณด๋‹ค๋Š” ๋ฐ์ดํ„ฐ๋ฅผ ๊น”๋”ํ•˜๊ฒŒ ๋งŒ๋“ค๊ธฐ ์œ„ํ•ด์„œ ๋ณตํ•ฉ์ ์œผ๋กœ ์‚ฌ์šฉํ•œ๋‹ค๋Š” ๋Š๋‚Œ์ด ์ค‘์š”ํ•˜๋‹ค๊ณ  ์ƒ๊ฐํ•œ๋‹ค๐Ÿ™ƒ๐Ÿ™ƒ.

๐Ÿงฉ ๋‹ค์Œ ํฌ์ŠคํŒ…์—์„œ๋Š” Preprocessing์— ๋Œ€ํ•ด์„œ ๊น”๋”ํ•˜๊ฒŒ ํ์–ด๋ณด๊ธฐ๋กœ ํ•˜์ž๐Ÿƒโ€โ™‚๏ธ๐Ÿƒโ€โ™‚๏ธ.


๐Ÿ’ก์œ„ ํฌ์ŠคํŒ…์€ ํ•œ๊ตญ์™ธ๊ตญ์–ด๋Œ€ํ•™๊ต ๋ฐ”์ด์˜ค๋ฉ”๋””์ปฌ๊ณตํ•™๋ถ€ ๊ณ ์œคํฌ ๊ต์ˆ˜๋‹˜์˜ [์ƒ๋ช…์ •๋ณดํ•™์„ ์œ„ํ•œ ๋ฐ์ดํ„ฐ๋งˆ์ด๋‹] ๊ฐ•์˜ ๋‚ด์šฉ์„ ๋ฐ”ํƒ•์œผ๋กœ ํ•จ์„ ๋ฐํž™๋‹ˆ๋‹ค.

Leave a comment