๐Ÿ† 1. KOSPI ์ง€์ˆ˜ ์˜ˆ์ธกํ•ด๋ณด๊ธฐ

๐Ÿ“ˆ ์ฃผ๊ฐ€ ์˜ˆ์ธก์— ์ฃผ๋กœ ์‚ฌ์šฉํ•˜๋Š” FbProphet ๋ชจ๋“ˆ์„ ์‚ฌ์šฉํ•ด์„œ ์ฝ”์Šคํ”ผ์ง€์ˆ˜๋ฅผ ์˜ˆ์ธกํ•  ๊ฒƒ์ž…๋‹ˆ๋‹ค.
๐Ÿ“ˆ ์ด ๋ชจ๋“ˆ์„ ์„ค์น˜ํ•˜๊ณ  ์‚ฌ์šฉํ•˜๊ธฐ๊ฐ€ ์ •๋ง ์–ด๋ ค์› ์Šต๋‹ˆ๋‹ค. ์ด ๋ชจ๋“ˆ์„ ์‚ฌ์šฉํ•˜์‹ค ๋ถ„๋“ค์€ ์ฒ˜์Œ๋ถ€ํ„ฐ ์ฝ”๋žฉ์—์„œ ์‹คํ–‰ํ•˜์‹œ๋Š” ๊ฒŒ ์ข‹์„ ๊ฒƒ ๊ฐ™์Šต๋‹ˆ๋‹ค!!
๐Ÿ“ˆ FbProphet ๋ชจ๋“ˆ ์‚ฌ์šฉ์„ ์œ„ํ•ด ๋ฏธ๋ฆฌ ์„ค์น˜ํ•ด์ค˜์•ผ ํ•  ๋ชจ๋“ˆ์ด ์ƒ๋‹นํžˆ ๋งŽ์Šต๋‹ˆ๋‹ค. ์„ค์น˜๋ฅผ ๋จผ์ € ํ•˜๊ณ , KOSPI ์ง€์ˆ˜๋ฅผ ์˜ˆ์ธกํ•  ๊ฒƒ์ž…๋‹ˆ๋‹ค.


๐Ÿ† 1.1. ํ•„์š”ํ•œ ๋ชจ๋“ˆ ์„ค์น˜

# wheel ๋ชจ๋“ˆ ์„ค์น˜
pip install wheel

# cython ๋ชจ๋“ˆ ์„ค์น˜
pip install cython

# pystan ๋ชจ๋“ˆ ์„ค์น˜
# ํŠน์ • ๋ฒ„์ „์—์„œ๋งŒ ์ž‘๋™ํ•  ์ˆ˜๋„ ์žˆ์–ด ์—ฌ๋Ÿฌ ๋ฒ„์ „์„ ์‹คํ—˜ํ•ด ๋ณด์•˜๋Š”๋ฐ, 2.17.1.0 ๋ฒ„์ „์—์„œ ์ž˜ ์ž‘๋™ํ–ˆ๋‹ค.
pip install pystan==2.17.1.0

# fbprophet ๋ชจ๋“ˆ ์„ค์น˜
pip install fbprophet==0.6

# fbprophet ๋ชจ๋“ˆ ์—…๋ฐ์ดํŠธ
pip install --upgrade fbprophet

# ์„ค์น˜ํ•œ ๋ชจ๋“ˆ ์ž„ํฌํŠธ
from fbprophet import Prophet
from fbprophet.plot import plot_plotly, plot_components_plotly

# statsmodels ๋ชจ๋“ˆ ์„ค์น˜
!pip install statsmodels==0.11.1

๐Ÿ“ˆ ์œ„ ์ˆœ์„œ๋Œ€๋กœ ๋ชจ๋“ˆ์„ ์„ค์น˜ํ•˜๋ฉด ๋ญ”๊ฐ€ ์ขŒ๋ฅด๋ฅด๋ฅต ๋งŽ์ด ์ถœ๋ ฅ๋ฉ๋‹ˆ๋‹ค.

๐Ÿ“ˆ ๋ธ”๋กœ๊ทธ ํฌ์ŠคํŒ…์—์„œ๋Š” ๊ฐ€๋…์„ฑ์„ ์œ„ํ•ด์„œ ์ด๋Ÿฌํ•œ ์„ค์น˜ ์ถœ๋ ฅ์„ ๋ชจ๋‘ ๋ฐฐ์ œํ•˜์˜€๋‹ค๋Š” ์  ์–‘ํ•ด ๋ถ€ํƒ๋“œ๋ฆฝ๋‹ˆ๋‹ค!!

๐Ÿ“ˆ ์‹ค์ œ๋กœ fbprophet ๋ชจ๋“ˆ์„ ์‚ฌ์šฉํ•˜์‹ค ๋ถ„๋“ค๋„ ์œ„์˜ ์ˆœ์„œ๋ฅผ ๋”ฐ๋ฅด์‹œ๋Š” ๊ฒŒ ์ข‹์„ ๊ฒƒ ๊ฐ™๋‹ค๊ณ  ์ƒ๊ฐํ•ฉ๋‹ˆ๋‹ค๐Ÿ™‚.


๐Ÿ† 1.2. 2019~2022๋…„๋„ ์ฝ”์Šคํ”ผ ์ง€์ˆ˜๋ฅผ ์‚ฌ์šฉํ•œ ์˜ˆ์ธก

# stick_2019 ๋ณ€์ˆ˜์— 2019๋…„๋„ ์ดํ›„์˜ ์ฝ”์Šคํ”ผ์ง€์ˆ˜ ์„ ์–ธ
# ์˜ˆ์ธกํ•˜๊ณ ์ž ํ•˜๋Š” column์œผ๋กœ ์ง€์ˆ˜์˜ ์ข…๊ฐ€๋ฅผ, ์˜ˆ์ธก์„ ์œ„ํ•œ ๋‚ ์งœ ๋ฐ์ดํ„ฐ๋กœ๋Š” ์ธ๋ฑ์Šค๋ฅผ ์„ ์–ธ
stock_2019 = kospi_2019
stock_2019['y'] = stock_2019['Close']
stock_2019['ds'] = stock_2019.index

# ์˜ˆ์ธก์„ ์œ„ํ•œ ๋ชจ๋ธ ์ƒ์„ฑ : m_2019
m_2019 = Prophet()
m_2019.fit(stock_2019)

# ํ–ฅํ›„ 15์ผ๊ฐ„์˜ ์ง€์ˆ˜๋ฅผ ์˜ˆ์ธก
future_2019 = m_2019.make_future_dataframe(periods=15)
forecast_2019 = m_2019.predict(future_2019)
# matplotlib - ์‹œ๊ฐํ™” 
# ํŒŒ๋ž€ ์‹ค์„ ์ด ์‹ค์ œ ์ง€์ˆ˜๋ฅผ, ์ฃผํ™ฉ์ƒ‰ ์‹ค์„ ์ด ์˜ˆ์ธก ์ง€์ˆ˜๋ฅผ ์˜๋ฏธ

plt.figure(figsize=(15,7))
plt.plot(kospi_2019.index, kospi_2019["Close"], label="real")
plt.plot(forecast_2019["ds"], forecast_2019["yhat"], label="forecast")
plt.grid(True)
plt.legend()
plt.show()


  • ์‹ค์ œ ์ง€์ˆ˜์™€ ์˜ˆ์ธก ๊ฐ’ ์‚ฌ์ด์— ์ฐจ์ด๊ฐ€ ์žˆ๊ธด ํ•˜์ง€๋งŒ, ์ „์ฒด์ ์ธ ์ถ”์„ธ๋Š” ๋ชจ๋‘ ๋”ฐ๋ผ๊ฐ€๊ณ  ์žˆ๋‹ค๋Š” ๊ฒƒ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ์Šต๋‹ˆ๋‹ค.
# ์ „์ฒด๊ธฐ๊ฐ„ ๋™์•ˆ์˜ ์ง€์ˆ˜ ํŠธ๋ Œ๋“œ์™€ ์›”๋ณ„, ์ฃผ๋ณ„ ๋ณ€๋™๋Ÿ‰
m_2019.plot_components(forecast_2019);


  • 2019~2022 ๊ธฐ๊ฐ„ ๋™์•ˆ์˜ ์ง€์ˆ˜ ํŠธ๋ Œ๋“œ์™€ ์›”๋ณ„, ์ฃผ๋ณ„ ๋ณ€๋™๋Ÿ‰์„ ๋‚˜ํƒ€๋ƒˆ์Šต๋‹ˆ๋‹ค.
  • ์ฝ”์Šคํ”ผ ์ง€์ˆ˜๊ฐ€ 3์›” ๋ง๊ณผ ํ•œ์ฃผ์˜ ์‹œ์ž‘์ธ ์›”์š”์ผ์— ๋งŽ์ด ๋–จ์–ด์ง€๋Š” ๊ฒƒ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ์Šต๋‹ˆ๋‹ค.
  • ์ด๋ ‡๊ฒŒ ํ–ฅํ›„ KOSPI์ง€์ˆ˜์˜ ํ–‰๋ณด๋ฅผ ๋Œ€๋žต์ ์œผ๋กœ ์•Œ์•„๋ณด์•˜๊ณ , ํŠธ๋ Œ๋“œ์™€ ์›”๋ณ„, ์ฃผ๋ณ„ ๋™ํ–ฅ๋„ ์•Œ์•„๋ณด์•˜์Šต๋‹ˆ๋‹ค. ์ด์ œ ์‹ค์ œ๋กœ ๊ฐ’์„ ์˜ˆ์ธกํ•ด๋ณด๋„๋ก ํ•ฉ์‹œ๋‹ค.
#2019~2022 ๊นŒ์ง€์˜ ๋ฐ์ดํ„ฐ๋ฅผ ์‚ฌ์šฉํ•œ ๊ฒฐ๊ณผ ์ฝ”์Šคํ”ผ์ง€์ˆ˜์˜ ์˜ˆ์ธก
forecast_2019[['ds', 'yhat', 'yhat_lower', 'yhat_upper']].iloc[-15:]
>> Out[44] 


                ds	       yhat	 yhat_lower	 yhat_upper
913	2022-09-14	2363.812642	2276.453019	2455.542920
914	2022-09-15	2359.269320	2272.205219	2453.624150
915	2022-09-16	2355.217647	2260.617968	2446.259285
916	2022-09-17	2352.057246	2262.644187	2441.262350
917	2022-09-18	2347.922472	2252.701098	2441.691746
918	2022-09-19	2339.581314	2251.434051	2430.593805
919	2022-09-20	2341.494508	2258.825601	2433.583536
920	2022-09-21	2334.967461	2243.451821	2430.275066
921	2022-09-22	2327.559200	2232.059805	2416.580543
922	2022-09-23	2320.743648	2232.000082	2411.908552
923	2022-09-24	2314.971382	2228.765209	2418.079241
924	2022-09-25	2308.425217	2224.299974	2403.270875
925	2022-09-26	2297.918064	2204.928287	2386.758705
926	2022-09-27	2297.951072	2211.819755	2394.883481
927	2022-09-28	2289.864683	2198.925061	2383.381680
  • ์‚ฌ์šฉํ•œ ๋ฐ์ดํ„ฐ๋Š” 2022-09-13 ๊นŒ์ง€์˜ ๋ฐ์ดํ„ฐ์˜€์Šต๋‹ˆ๋‹ค.
  • fbprophet ์˜ˆ์ธก ๋ชจ๋ธ์„ ํ†ตํ•ด์„œ ํ–ฅํ›„ 15์ผ๊ฐ„์˜ ์ฝ”์Šคํ”ผ์ง€์ˆ˜๋ฅผ ์˜ˆ์ƒํ•ด๋ณด์•˜์Šต๋‹ˆ๋‹ค.
  • 2019~2022 ๊นŒ์ง€์˜ ๋ฐ์ดํ„ฐ๋ฅผ ์‚ฌ์šฉํ•œ ๊ฒฐ๊ณผ ์ฝ”์Šคํ”ผ์ง€์ˆ˜์˜ ์˜ˆ์ธก๊ฐ’์€ ์•„๋ž˜์™€ ๊ฐ™์Šต๋‹ˆ๋‹ค.
  • ์˜ˆ์ธกํ•œ ์ข…๊ฐ€๊ฐ€ ๊ฐˆ์ˆ˜๋ก ๋‚ฎ์•„์ง€๋Š” ์ถ”์„ธ์ด๋ฉฐ, ์ƒํ•œ๊ฐ€์™€ ํ•˜ํ•œ๊ฐ€์˜ ์ฐจ์ด๊ฐ€ ๊ฝค๋‚˜ ํฌ๊ฒŒ ์˜ˆ์ธก๋˜๊ณ  ์žˆ์Œ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

๐Ÿ† 1.3. 2022๋…„๋„ ์ฝ”์Šคํ”ผ ์ง€์ˆ˜๋งŒ์„ ์‚ฌ์šฉํ•œ ์˜ˆ์ธก

๐Ÿ“ˆ ์ด์–ด์„œ 2022๋…„๋„์˜ ๋ฐ์ดํ„ฐ๋งŒ์„ ์‚ฌ์šฉํ•ด ์ฝ”์Šคํ”ผ์ง€์ˆ˜๋ฅผ ์˜ˆ์ธกํ•ด๋ณด์•˜์Šต๋‹ˆ๋‹ค.
๐Ÿ“ˆ ๋™์ผํ•˜๊ฒŒ ํ–ฅํ›„ 15์ผ ๊ฐ„์˜ ์ง€์ˆ˜๋ฅผ ์˜ˆ์ธกํ•˜์˜€์œผ๋ฉฐ, ์ด ์˜ˆ์ธก ๊ฒฐ๊ณผ๋ฅผ forecast_2022 ๊ฐ์ฒด์— ์ €์žฅํ•˜์˜€์Šต๋‹ˆ๋‹ค.

stock_2022 = kospi_2022
stock_2022['y'] = stock_2022['Close']
stock_2022['ds'] = stock_2022.index

m_2022 = Prophet()
m_2022.fit(stock_2022)

future_2022 = m_2022.make_future_dataframe(periods=15)
forecast_2022 = m_2022.predict(future_2022)

plt.figure(figsize=(15,7))
plt.plot(kospi_2022.index, kospi_2022["Close"], label="real")
plt.plot(forecast_2022["ds"], forecast_2022["yhat"], label="forecast")
plt.grid(True)
plt.legend()
plt.show()


  • ์•ž์„œ ์‚ดํŽด๋ณธ 2019~2022๋…„๋„์˜ ๊ฒฐ๊ณผ์™€ ๋น„๊ตํ•ด๋ณด๋ฉด ์‹ค์ œ๊ฐ’๊ณผ ์˜ˆ์ธก๊ฐ’์˜ ์ฐจ์ด๊ฐ€ ๊ฝค๋‚˜ ํฌ๊ฒŒ ๋‚˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.
  • ๊ทธ๋Ÿผ์—๋„ ์–ด๋Š ์ •๋„ ์ถ”์„ธ๋Š” ์ž˜ ๋”ฐ๋ผ๊ฐ€๋Š” ๋ชจ์Šต์„ ๋ณผ ์ˆ˜ ์žˆ๋Š”๋ฐ, ์ด๋Š” ์ƒ๋Œ€์ ์œผ๋กœ ๋ฐ์ดํ„ฐ์˜ ์–‘์ด ์ ๊ธฐ ๋•Œ๋ฌธ์ผ ๊ฒƒ์ด๋ผ ์ƒ๊ฐํ•ฉ๋‹ˆ๋‹ค.
# ํŠธ๋ Œ๋“œ์™€ ์š”์ผ๋ณ„ ์ง€์ˆ˜ ๋ณ€๋™
m_2022.plot_components(forecast_2022);


  • ์ด๋ฒˆ์—๋„ ํŠธ๋ Œ๋“œ์™€ ์š”์ผ๋ณ„ ์ง€์ˆ˜ ๋ณ€๋™์„ ์‚ดํŽด๋ณด์•˜์Šต๋‹ˆ๋‹ค.
  • 2022๋…„๋„๋งŒ ๋ณด๋ฉด 7์›”์— ์ง€์ˆ˜๊ฐ€ ์ •๋ง ๋งŽ์ด ๋–จ์–ด์กŒ๊ณ , ์›”์š”์ผ๋งŒ ํŠนํžˆ ๋‚ฎ์•˜๋˜ ์ง€๋‚œ 3๋…„๊ณผ ๋‹ฌ๋ฆฌ ์ฃผ์ค‘ ๋‚ด๋‚ด ์ง€์ˆ˜๊ฐ€ ๋งˆ์ด๋„ˆ์Šค์ธ ๊ฒฝ์šฐ๋ฅผ ํ™•์ธ ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
  • ์ง€์ˆ˜๊ฐ€ ์‰ฝ๊ฒŒ ํšŒ๋ณตํ•˜์ง€ ๋ชปํ•˜๊ณ  ์žˆ๋Š” ํ˜„์ƒ์„ ์œ„์˜ ๋™ํ–ฅ์„ ๋ฐ”ํƒ•์œผ๋กœ ์•Œ์•„๋ณผ ์ˆ˜๋„ ์žˆ์„ ๊ฒƒ ๊ฐ™์Šต๋‹ˆ๋‹ค.
  • ์ด์ œ 2022๋…„๋„ ๋ฐ์ดํ„ฐ๋กœ ์ง€์ˆ˜๋ฅผ ์˜ˆ์ธกํ•ด๋ณด๋„๋ก ํ•ฉ์‹œ๋‹ค!!
forecast_2022[['ds', 'yhat', 'yhat_lower', 'yhat_upper']].iloc[-15:]
>> Out[49]

	        ds	       yhat	 yhat_lower	 yhat_upper
171	2022-09-14	2483.494673	2417.317779	2546.866758
172	2022-09-15	2482.589250	2418.292829	2541.825097
173	2022-09-16	2492.464880	2428.540714	2556.977455
174	2022-09-17	2503.760585	2439.685602	2567.591851
175	2022-09-18	2505.333261	2435.380120	2568.248356
176	2022-09-19	2488.467385	2423.058140	2553.402026
177	2022-09-20	2492.644270	2428.006095	2559.014198
178	2022-09-21	2494.503400	2431.314316	2559.545292
179	2022-09-22	2493.597977	2430.479788	2558.036223
180	2022-09-23	2503.473607	2437.839679	2566.018739
181	2022-09-24	2514.769311	2447.731730	2576.440760
182	2022-09-25	2516.341988	2449.493558	2584.204460
183	2022-09-26	2499.476112	2430.244812	2562.016261
184	2022-09-27	2503.652996	2437.587989	2567.562299
185	2022-09-28	2505.512127	2440.712487	2573.243216

๐Ÿ† 1.4. 2019~2022 ๋ฐ์ดํ„ฐ ์˜ˆ์ธก๊ฐ’๊ณผ 2022๋…„ ๋ฐ์ดํ„ฐ ์˜ˆ์ธก๊ฐ’ ๋น„๊ต

๐Ÿ“ˆ ๋‘ ๋ฐ์ดํ„ฐ๋กœ๋ถ€ํ„ฐ ๋‚˜์˜จ ์˜ˆ์ธก๊ฐ’๋“ค์„ ๋น„๊ตํ•ด๋ด…์‹œ๋‹ค.

# ์˜ˆ์ธก๊ฐ’์œผ๋กœ๋ถ€ํ„ฐ ๋งˆ์ง€๋ง‰ 20์ผ๊ฐ„์˜ ์ˆ˜์น˜๋งŒ ๊ฐ€์ ธ์˜ด
df_2019 = forecast_2019[['ds', 'yhat']].iloc[-20:]
df_2022 = forecast_2022[['ds', 'yhat']].iloc[-20:]
df_2019 = df_2019.set_index('ds')
df_2022 = df_2022.set_index('ds')
df_2022

# ๊ฐ ์˜ˆ์ธก์„ ๋ณ‘ํ•ฉํ•˜์—ฌ ์ƒˆ๋กœ์šด ๋ฐ์ดํ„ฐํ”„๋ ˆ์ž„์ธ forecast๋ฅผ ์ƒ์„ฑํ•จ
# column yhat_x๊ฐ€ 2019~2022 ์ง€์ˆ˜๋ฅผ, yhat_y๊ฐ€ 2022 ์ง€์ˆ˜๋ฅผ ๋ฐ˜์˜ํ•œ ์˜ˆ์ธก๊ฐ’์ž„

forecast = pd.merge(df_2019, df_2022, how = 'inner', left_index = True, right_index = True)
forecast
>> Out[66]

	             yhat_x	     yhat_y
        ds		
2022-09-05	2369.353959	2466.449932
2022-09-06	2375.783320	2470.626816
2022-09-07	2374.069666	2472.485947
2022-09-08	2371.692720	2471.580523
2022-09-13	2367.426042	2481.635543
2022-09-14	2363.812642	2483.494673
2022-09-15	2359.269320	2482.589250
2022-09-16	2355.217647	2492.464880
2022-09-17	2352.057246	2503.760585
2022-09-18	2347.922472	2505.333261
2022-09-19	2339.581314	2488.467385
2022-09-20	2341.494508	2492.644270
2022-09-21	2334.967461	2494.503400
2022-09-22	2327.559200	2493.597977
2022-09-23	2320.743648	2503.473607
2022-09-24	2314.971382	2514.769311
2022-09-25	2308.425217	2516.341988
2022-09-26	2297.918064	2499.476112
2022-09-27	2297.951072	2503.652996
2022-09-28	2289.864683	2505.512127
  • ๋‘ ์˜ˆ์ธก๊ฐ’์„ ์‹œ๊ฐํ™”๋ฅผ ํ†ตํ•ด ๋น„๊ตํ•ด๋ด…์‹œ๋‹ค๐Ÿ™‚.
plt.figure(figsize=(15,7))
plt.plot(forecast.index, forecast["yhat_x"], label="2019-2022")
plt.plot(forecast.index, forecast["yhat_y"], label="2022")
plt.grid(True)
plt.legend()
plt.show()


  • ๋น„๊ต ๊ฒฐ๊ณผ, 9์›” 5์ผ๋ถ€ํ„ฐ 9์›” 28์ผ๊นŒ์ง€ 2022๋…„๋„์˜ ์ฝ”์Šคํ”ผ ์ง€์ˆ˜๋ฅผ ํ†ตํ•ด ์˜ˆ์ธกํ•œ ๊ฒฐ๊ณผ๊ฐ€ 3๋…„๊ฐ„์˜ ์ง€์ˆ˜๋ฅผ ํ†ตํ•ด ์˜ˆ์ธกํ•œ ๊ฒฐ๊ณผ๋ณด๋‹ค ๋ชจ๋‘ ์ƒ์œ„์— ์žˆ๋Š” ๊ฒƒ์„ ์•Œ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
  • 3๋…„๊ฐ„์˜ ๋ฐ์ดํ„ฐ๋Š” 2020๋…„๊ณผ 2021๋…„๋„์˜ ์ง€์ˆ˜๊ฐ€ ์••๋„์ ์œผ๋กœ ๋†’์•˜๊ธฐ ๋•Œ๋ฌธ์— ๊ณ„์†ํ•ด์„œ ๋–จ์–ด์ง€๊ณ  ์žˆ๋Š” 2022๋…„๋„์˜ ์ง€์ˆ˜์— ์ข€ ๋” ๋ฏผ๊ฐํ•˜๊ฒŒ ๋ฐ˜์‘ํ•˜๊ณ  ์žˆ๋Š”๊ฒƒ์ด ์•„๋‹๊นŒ ์ƒ๊ฐํ•ฉ๋‹ˆ๋‹ค.

๐Ÿ† 2. ๊ฒฐ๊ณผ ๋ถ„์„

  • ์ด๋ ‡๊ฒŒ plotly๋ฅผ ํ†ตํ•ด ์‹œ๊ฐํ™”ํ•˜๊ณ , fbprophet์„ ํ†ตํ•ด์„œ ํ–ฅํ›„ 15์ผ ๊ฐ„์˜ ์ฝ”์Šคํ”ผ์ง€์ˆ˜๋„ ์˜ˆ์ธกํ•ด๋ณด์•˜์Šต๋‹ˆ๋‹ค.

  • ์ด๋™ํ‰๊ท ์„ ๋“ค์„ ์‚ฌ์šฉํ•ด์„œ ์‹œ๊ฐํ™”ํ•ด๋ณธ ๊ฒฐ๊ณผ ์•„์ง ์žฅ๊ธฐ์ด๋™ํ‰๊ท ์„ ๊ณผ ๋‹จ๊ธฐ์ด๋™ํ‰๊ท ์„  ์‚ฌ์ด์˜ ์ฐจ์ด๊ฐ€ ์ปค์„œ ์‰ฝ๊ฒŒ ์ฝ”์Šคํ”ผ์ง€์ˆ˜๊ฐ€ ๋ฐ˜๋“ฑํ•˜๊ธฐ๋Š” ํž˜๋“ค์–ด ๋ณด์ด๋Š” ๊ฒƒ์ด ์‚ฌ์‹ค์ž…๋‹ˆ๋‹ค. ํ•˜์ง€๋งŒ ์ด๋ ‡๊ฒŒ ์ˆซ์ž๋กœ๋งŒ ํ•˜๋Š” ์‹œ๊ฐํ™” ์˜ˆ์ธก๊ณผ ๋‹ฌ๋ฆฌ ์ฃผ๊ฐ€๋Š” ์–ฝํ˜€์žˆ๋Š” ์ƒํ™ฉ์ด ์ฐธ ๋งŽ์Šต๋‹ˆ๋‹ค. ๋ฐ์ดํ„ฐ๋กœ๋Š” ํ‘œํ˜„ํ•  ์ˆ˜ ์—†๋Š” ๊ตญ์ œ ์ •์„ธ์™€ ์‚ฌ๋žŒ๋“ค์˜ ์†Œ๋น„ ์‹ฌ๋ฆฌ ํ•˜๋‚˜ํ•˜๋‚˜๊ฐ€ ์ฃผ๊ฐ€์— ์ •๋ง ๋งŽ์€ ์˜ํ–ฅ์„ ๋ฏธ์น˜๊ธฐ ๋•Œ๋ฌธ์—, ์ด๋Ÿฐ ์‹œ๊ฐํ™” ๋ชจ๋ธ ํ•˜๋‚˜๋งŒ ๋ณด๊ณ  ์ฃผ๊ฐ€๊ฐ€ ์˜ค๋ฅด์ง€ ์•Š์„๊ฑฐ์•ผ!! ๋ผ๊ณ  ์ƒ๊ฐํ•˜์‹ค ํ•„์š”๋Š” ์ „ํ˜€ ์—†์Šต๋‹ˆ๋‹ค. ์ˆซ์ž๊ฐ€ ํ•ญ์ƒ ์ฐธ์„ ๋งํ•˜๋Š” ๊ฑด ์•„๋‹ˆ๋‹ˆ๊นŒ์š”.
  • fbprophet ๋ชจ๋“ˆ์„ ์‚ฌ์šฉํ•ด์„œ ์ง„ํ–‰ํ•œ ์˜ˆ์ธก์€ 3๋…„๊ฐ„์˜ ๋ฐ์ดํ„ฐ์™€ 2022๋…„์˜ ๋ฐ์ดํ„ฐ๋ฅผ ์‚ฌ์šฉํ–ˆ์„ ๋•Œ ์„œ๋กœ ์ƒ๊ฐ๋ณด๋‹ค ํฐ ์ฐจ์ด๋ฅผ ๋ณด์—ฌ์ฃผ์—ˆ์Šต๋‹ˆ๋‹ค. ์ฝ”์Šคํ”ผ ์ง€์ˆ˜๊ฐ€ ํ•œ์ฐฝ ์ตœ๊ณ ์ ์„ ์ฐ๊ณ  ์žˆ์—ˆ์„ ๋•Œ์˜ ๋ฐ์ดํ„ฐ๋ฅผ ํ•™์Šตํ•œ ๊ฒƒ๊ณผ, ๊ณ„์† ๋–จ์–ด์ง€๊ณ  ์žˆ๋Š” ๋ฐ์ดํ„ฐ๋ฅผ ํ•™์Šตํ•œ ๊ฒƒ์ด ์ฐจ์ด๋ฅผ ๋งŒ๋“  ๊ฐ€์žฅ ํฐ ์ด์œ ๊ฐ€ ์•„๋‹๊นŒ ์ƒ๊ฐํ•ฉ๋‹ˆ๋‹ค. ์ „์ฒด์ ์œผ๋กœ ํ˜ธํ™ฉ์ผ ๋•Œ์˜ ๋ฐ์ดํ„ฐ๋ฅผ ํ•™์Šตํ•˜๋ฉด ์•„๋ฌด๋ž˜๋„ ๋ชจ๋ธ ์ž์ฒด๊ฐ€ ๋†’์€ ์ˆ˜์น˜์—๋Š” ์ ์€ ๊ฐ€์ค‘์น˜๋ฅผ ๋‘๊ณ , ๋‚ฎ์€ ์ˆ˜์น˜์—๋Š” ๋†’์€ ๊ฐ€์ค‘์น˜๋ฅผ ๋‘˜ํ…Œ๋‹ˆ ์ง€์†์ ์œผ๋กœ ๋–จ์–ด์ง€๋Š” ์ค‘์ธ 2022๋…„๋„์˜ ๋‚ฎ์€ ์ˆ˜์น˜์— ๋ฏผ๊ฐํ•˜๊ฒŒ ๋ฐ˜์‘ํ•˜๊ธฐ ๋•Œ๋ฌธ์ผ ๊ฒƒ์ž…๋‹ˆ๋‹ค. 2022๋…„๋„์˜ ๋ฐ์ดํ„ฐ๋ฅผ ํ•™์Šตํ•œ ๊ฒฝ์šฐ๋Š” ์ •๋ฐ˜๋Œ€๋ผ๊ณ  ์ƒ๊ฐํ•˜๋ฉด ๋˜์‹ค ๊ฒƒ ๊ฐ™์Šต๋‹ˆ๋‹ค!!
  • ํ•˜์ง€๋งŒ ๋งํ–ˆ๋“ฏ์ด ์ˆ˜์น˜๊ฐ€ ํ•ญ์ƒ ๋ชจ๋“  ๊ฒƒ์„ ๋งํ•ด์ฃผ๋Š” ๊ฒƒ์€ ์•„๋‹™๋‹ˆ๋‹ค. ์‹ฌ์ง€์–ด ์ฝ”์Šคํ”ผ์ง€์ˆ˜๋Š” ์šฐ๋ฆฌ๋‚˜๋ผ ๊ธฐ์—…์˜ ๋Œ€๋ถ€๋ถ„์˜ ์ •๋ณด๋ฅผ ๋‹ด๊ณ  ์žˆ์œผ๋‹ˆ, ์„ธ์„ธํ•œ ์›€์ง์ž„์— ๋ฐ˜์‘ํ•˜๊ธฐ๋Š” ๋” ์–ด๋ ค์šธ ์ˆ˜ ์žˆ์ง€ ์•Š์„๊นŒ ํ•ฉ๋‹ˆ๋‹ค. ์ฒ˜์Œ ํ•ด๋ณธ ์‹œ๊ณ„์—ด ๋ถ„์„์ด๋ผ ๋งŽ์ด ๋ถ€์กฑํ–ˆ๋˜ ๊ฒƒ ๊ฐ™์Šต๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ๊ฒฝํ—˜์„ ๋ฐ”ํƒ•์œผ๋กœ, ์•ž์œผ๋กœ ๋” ๋งŽ์€ ๋ถ„์„์„ ํ†ตํ•ด ๋ฐœ์ „ํ•ด๋‚˜๊ฐ€๊ณ  ์‹ถ์Šต๋‹ˆ๋‹ค๐Ÿ™‚.

Leave a comment